Floristic evidence for the continuity of vegetation types often lingers in the form of relicts which inhabit isolated refugia. This evidence can be ambiguous in families with adaptations to long distance dispersal. However, in a number of families, vicariance is the only logical explanation for distributional anomalies. This paper records disjunctions in Acanthaceae, Thymelaeaceae and Lamiaceae, all families renowned for the parochial dispersal of seeds and fruits.

Recent research (Edwards & Harrison 1998) revealed a distributional extension to the range of *Pseud ran them um hildebrandtii* Lindau (Acanthaceae) which reiterates the floristic links between tropical East Africa and northern KwaZulu-Natal. This species is associated with woodlands and provides compelling evidence of the continuity of dense savanna and forest habitat between the eastern seaboard of South Africa and populations in Tanzania. Acanthaceae have explosive fruits with elastic
funicles (retinaculae) which are effective in local dispersal but are not suitable for long distance dispersal. It was therefore exciting to find another species of forest Acanthaceae, *Metarungia pubinervia*, which corroborates the above pattern.

According to Baden (1981) the genus *Metarungia* comprises three species, two of which, *M. galpinii* (Baden) Baden and *M. longistrobus* (C.B.Clarke) Baden, are endemic to the subcontinent and the type species, *M. pubinervia* (T.Anderson) Baden, is common in tropical East Africa, but has been recorded in southern Mozambique. The phytogeography of *Metarungia* is intriguing in its inconsistency. *M. longistrobus* occurs in association with forest patches in Mpumalanga, southwest Mozambique and Swaziland and, although the species occasionally ventures into stony grasslands with steep slopes, it is unable to survive fire. Similarly, *M. galpinii* is limited to forest habitats around East London, Eastern Cape, but in cultivation both species are more vigorous in exposed situations. There is no doubt that *M. galpinii* and *M. longistrobus* are sister species, the plants have very similar habit, creamy mustard corollas of similar size, similar androecia, gynoecia, inflorescence structure, fruits and seeds. The major differences which separate them relate to indumental differences, bract size, the loss of bracteoles in *M. galpinii*, and the much smaller calyces of *M. longistrobus*. If one accepts that these are vicarious sister species, then their current parochial distributions (Baden 1981) are remnants of the range of their hypothetical parent. This distributional disjunction provides compelling evidence of an ancient forest link between the afro-montane and riverine forests of Mpumalanga, in the north, and the coastal forests around East London. Neither species has yet been recorded from the intervening forests of KwaZulu-Natal. Extending this line of reasoning to *M. pubinervia* (Figure 9), allows one to postulate past forest linkage between the southern (Krantzkloof) and northern (Tanzanian) populations.

Shrubs 1–5 m tall; stems initially hairy, often with aerial roots. *Leaves* elliptic to narrowly obovate, 140–250 × 40–100 mm, sparsely strigose to glabrescent, apex acute to acuminate, veins sericeous when young, becoming glabrescent, acarodomatia present in vein axes; petiole 15–60 mm long. *Inflorescences* axillary, usually on leafless stems, 15–50 mm long; peduncles seldom exceeding 2 mm long, glabrescent; bracts tightly imbricate; lower bracts sterile, ovate to elliptic, 5–12 × 3–5 mm, apex slightly acuminate, margin slightly scarious; fertile bracts broadly oval, 10–15 × 6–9 mm, apex acuminate, margin markedly scarious, pink to red; bracteoles absent. *Calyx* 9–12 mm long, membranous; lobes pink, 7–9 × 2–3 mm, midveins green, extending into an apiculus. *Corolla* cylindrical, red; tube 9–11 mm; upper lip 28–31 × 8 mm, cucullate; lower lip coiled at anthesis, 20 × 3 mm. *Stamens* 2; filaments 20 mm long, cream-coloured, epipetalous, attached in throat; anther thecae oblique, 2–3 mm long. *Ovary* 2.5–3.0 × 1.5 mm, glabrescent; style 27–30 mm long, glabrous; nectariferous cupule 1–2 mm tall.

In the Krantzkloof population bracteoles were not observed. However, Baden (1981) records the occasional occurrence of linear bracteoles in tropical populations of *M. pubinervia*. In a generic context, the fugitive occurrence of bracteoles in this species is interesting because this character is used to discriminate between *M. longistrobus* and *M. galpinii*.

Throughout its range *M. pubinervia* occurs between 500 and 2 000 m in riverine and evergreen forest, in light shade. The Krantzkloof population is limited to scree along the base of sandstone cliffs. This unstable substrate reduces the establishment of the tree canopy and maintains the higher light intensities in which the species thrives. This population is fairly large (several hundred adult individuals and an abundance of seedlings) and the plants, although conspicuous, are in a fairly remote section of the gorge and have consequently escaped detection.

Specimen examined

THYMELAEACEAE

The poor capacity for long distance dispersal is common to a number of families, including Thymelaeaceae. Most South African species of *Gnidia* are grassland inhabitants and, due to the continuity of this habitat, relatively few species display disjunct distributions. *Gnidia denudata* is anomalous in this regard. The species has a tree-like habit and occurs in forest margins, lacking the resprouting caudex which enables grassland taxa to survive fire. The remaining *Gnidia* species are shorter, multi-stemmed shrubs or herbs inhabiting fynbos, grassland or subalpine zones. Lindley (1823) described *G. denudata*, the specific epithet referring to the lack of lamina hairs, which usually distinguishes this species from *G. imbricata* L.

Gnidia denudata Lindl., Botanical Register 9: t. 757 (1823); Spreng.: 152 (1827); Meisn.: 441 (1840); Drège: 123 (1843); Meisn.: 585 (1857); C.H.Wright: 63 (1915). *G. tomentosa* sensu Hook.: t. 2761 (1827) non Thunb. Type: South Africa, in nemorosis prope George, IV. C. b., Drège (NY, iso!)

Shrub to small tree up to 3 m tall (Wright 1915). Branches slender, erect to laxly arching, and pilose when young, glabrescent with age. Leaves simple, extipulate, 3-5-veined from base, clustered towards ends of branches, pilose when young. Inflorescences terminal or lateral clusters comprising 4-6 tubular, pale flowers; involucral bracts green, foliaceous, smaller than leaves, as long as hypanthia. Flowers 4-merous, sweetly scented at night; petaloid scales paired, narrowly oblong, alternating with calyx lobes. Stamens 8, in 2 rows in mouth and throat of tube.

The pilose young stems, leaves and flowers, together with the comparatively rare condition of broadly foliaceous leaves that are three to five-veined from the base, distinguish this species.

Some confusion has arisen regarding the nomenclature of *G. denudata* and *G. tomentosa*. Linnaeus (1753) described *G. tomentosa* from the mountains of the Cape Peninsula and Worcester areas. This shrub attains about 1 m in height and bears slightly scabrid, semi-coriaceous leaves which have verrucose surfaces: a result of raised lamina hairs, which usually distinguishes this species from *G. denudata*. Leaves of *G. denudata* lack the coarse texture and verrucose surfaces typical of *G. tomentosa*. In addition, the narrowly oblong petaloid scales of *G. denudata* distinguish it from *G. tomentosa* which has broad fleshy scales.

The distribution of this species shows a clear disjunction (Figure 10). It occurs south of Oudtshoorn and in the Knysna District of Western Cape and in the Willowmore District of Eastern Cape, where it inhabits margins of afromontane forest (Lubke & McKenzie 1996). Additional, less precise, distribution records (omitted from Figure 10) come from Western and Eastern Cape, the Swellendam Mountains; near Touws River, and the forest at Elands River, Tsitsikamma, Humansdorp (Wright 1915). The population from Inhaca Island, Mozambique, is highly disjunct. A specimen housed in the Geneva Herbarium and apparently collected by Drège from Port Natal (Durban) is probably erroneously labelled, as this species does not appear in any of his list of collections from the province (Drège1843). The specimen Coetze s.n., collected in KwaZulu-Natal (without any further locality details) in 1943, appears to be the only other collection from this province, which is curious in the light of the common occurrence of Cape relicts on the Natal Group Sandstone of the eastern seaboard (Van Wyk 1990). The species also appears to be absent from the mainland of Mozambique. Wright (1915) regarded the specimen, Rogers 20682 (STE), collected near Grahamstown, as a doubtful record, but in the light of the Inhaca population, this may warrant further investigation.

Specimens examined

WESTERN CAPE.—3322 (Oudtshoorn): Saasveld Forestry College, (-DC), Beaumont & Smith s.n. (NU); Karature River, (-DD), Schlechter 5887 (C). 3323 (Willowmore): Diepwalle Forest Reserve, (-CC), Bos 735 (STE). 3423 (Knysna): between Knoufontein and Bracken Hill, (-AA), Dahlgren & Peterson 1454 (GB).

EASTERN CAPE.—3323 (Willowmore): Camel Pile, (-DD), Esterhuyzen 27327 (GB). 3326 (Grahamstown): Grahamstown, (-BC), Rogers 28682 (GRA).

KWAZULU-NATAL.—Precise locality unknown: Coetze s.n. (J), Drège s.n. (G).

MOZAMBIQUE.—2632 (Bela Vista): Inhaca Island, (-BB), Maguire 35 (J).

LAMIACEAE

Plectranthus dolomiticus was described in 1984 by Codd. At that time, and in the subsequent FSA account (Codd 1985), the species was known only from the type locality near Penge Mine in Mpumalanga. Recently, a second population of the species was recorded from granite domes in Zimbabwe (Figure 10). While the geology of the respective sites is different, the physical aspects are very similar. Both populations occur in arid woodland on rock outcrops where plants occur in humus-filled crevices. During the dry season the species withers aerially and the populations rely on subter-
ranean tubers for sustenance. The disjunction, approaching 700 km, is considerable for *Plectranthus* species which have no mechanism to aid long-distance dispersal. It is therefore likely that additional populations of the species occur(ed) in the intervening rocky savanna. Codd's (1985) interpretation of alliances, between *P. dolomiticus* and the remainder of the genus, was that its closest relative is *P. petiolaris*. Considerable similarity exists between the flowers of these two species, both of which are siumgod, with similar proportions and deep purple colouring. Recently a third species, which displays a very similar corolla, was discovered in Zimbabwe (Edwards, Paton & Crouch 2000). This last species, *P. porphyranthus* T.J.Edwards & N.Crouch, is without doubt convergent in corolla form for it belongs to section *Coleoides*, whereas the former species are members of section *Plectranthus*. The convergence is probably being driven by widespread anthophorid bees, of the genus *Amegilla*, which are the primary pollinators. *Amegilla caelestina* (Cockrell), A. fallax (Smith) and A. bothai (Meadt-Woldo) were recorded on *P. porphyranthus*, and *A. caelestina, A. bothai* and *A. mimadena* (Cockrell) are the primary pollinators of *P. petiolaris*. The proposed alliance of *P. dolomiticus* with *P. petiolaris* (Codd 1985), based on corolla characters, may need reviewing in light of the convergent corolla design of *P. porphyranthus*.

Specimens examined

Plectranthus dolomiticus

ZIMBABWE.—1832 (Juliasdale), Pine Lake Inn, (-BA), Vos 359 (NU).

Plectranthus porphyranthus

ZIMBABWE.—2029 (Harare), Masvingo, (-BB) Richmond Farm, Crouch 800 (E.K. NH, NU, PRE); Harare, 3 miles [4.8 km] east of Zimbabwe (ruins), Leach 8043 (PRE).

ACKNOWLEDGEMENTS

The Natal University Research Fund and the National Research Fund are thanked for their financial assistance. The following herbaria C, G, GB, GRA, J, K, NU, PRE and STE are thanked for the loan of herbarium material and the National Botanical Institute, Pretoria, is thanked for access to the Mary Gunn Library. Neil Crouch is acknowledged for his endless enthusiasm in tracking down obscure references. Christina Potgieter is thanked for contributing insect data on the pollination of *Plectranthus petiolaris*. Rod Edwards is acknowledged for his contribution in the discovery of the *Metarungia pubinervia* population.

REFERENCES

T.J. EDWARDS*†, A.J. BEAUMONT* and D. STYLES*