The Ecological Profiles Technique applied to data from Lichtenburg, South Africa

J. W. Morris* AND J.-L. Guillerm†

ABSTRACT

The method of ecological profiles and information shared between species and ecological variables, developed in France, is described for the first time in English. Preliminary results, using the technique on Bankenveld quadrat data from Lichtenburg, Western Transvaal, are given. It is concluded that the method has great potential value for the understanding of the autecology of South African species provided that the sampling method is appropriate.

INTRODUCTION

Presently, one of the most commonly used ecological synthesis techniques at the Centre d'Études Phytosociologiques et Ecologiques (C.E.P.E.), Montpellier, is that of ecological profiles and information shared between species and ecological variables (Profils écologiques et information mutuelle entre espèces et facteurs écologiques). As the writers consider that the technique deserves trial by other than French-speaking ecologists, it is described below in detail. This account is the first known in English.

SAMPLE AREA AND DATA USED

The 110 × 4 m quadrats (in this account ‘quadrat’ is used for ‘sample’, ‘relevé’, etc.) used in the study, were laid out in a stratified random manner near Lichtenburg, Western Transvaal, within the 2626AA quarter-degree square. Details of the area and field sampling method are given in Morris (1973). The vegetation is classed as Bankenveld by Acocks (1953).

Flinistic data consisted of presence within the quadrats of 229 species. The 12 ecological variables listed in Table 1 were coded for analysis. The first eight are acceptable habitat variables. Soil colour

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Variable</th>
<th>Initial No. of classes</th>
<th>No. of classes after grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Topographic position</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Aspect</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Slope</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Biotic influence</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>Surface rocks</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>Soil depth</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>Soil pH</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>Soil HCl reaction</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Soil colour (Munsell)</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>Total basal cover</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>Basal cover stratum II</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>12.</td>
<td>Basal cover stratum IV</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

The first account of the method was given by Godron (1965) and since then more detailed accounts have been prepared by Godron (1968), Daget et al. (1972), Guillerm (1969 a, b and c) and by Guillerm (1971), all of which have been in French. Both floristic and habitat data from samples are used in this univariate technique. According to Daget et al. (1972), and others, its main application is sampling improvement, but this is by no means its only use.

ECOLOGICAL VARIABLES AND EQUITABILITY OF SAMPLING

The first step is the calculation of the comprehensive profile (CP) for each ecological variable. The CP is a list of all the classes of a variable and the frequency of occurrence of quadrats in each class. An example of a CP is given in Table 2 where there are a total of N quadrats.

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>. . . .</th>
<th>Class K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>. . . .</td>
<td>Rk</td>
<td>N = Σ R1</td>
</tr>
</tbody>
</table>

Comprehensive profiles for the 12 variables of this study are given in Table 3. The CP gives the distribution of absolute frequency. Relative frequency is obtained by dividing each frequency by N. If the absolute frequency is not too low, a good estimate of probability of occurrence may be obtained from the relative frequencies. If the environmental gradient has been well sampled, quadrats will be equally distributed through the classes of the CP and, hence, the probabilities of occurrence will be approximately equal. A variable for which quadrats have equal probabilities

* Botanical Research Institute, Department of Agricultural Technical Services, Private Bag X101, Pretoria.
† Centre d'Études Phytosociologiques et Ecologiques L. Emberger, B.P. 5051, Montpellier 34, France.
356 THE ECOLOGICAL PROFILES TECHNIQUE APPLIED TO DATA FROM LICHTENBURG, SOUTH AFRICA

Table 3. Comprehensive profiles for variables used in the analysis. Class numbers (from Godron et al., 1968) do not apply to variables marked with an asterisk.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Class numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Topographic position</td>
<td>13 40 19 5 2 15 11 5</td>
</tr>
<tr>
<td>2. Aspect</td>
<td>68 8 1 1 28 2 2</td>
</tr>
<tr>
<td>3. Slope*</td>
<td>69 36 5 21 24 38 27</td>
</tr>
<tr>
<td>4. Biotic influence</td>
<td>16 27 41 26</td>
</tr>
<tr>
<td>5. Surface rock*</td>
<td>3 42 29 14 9 4 1 1 2 2 3</td>
</tr>
<tr>
<td>6. Soil depth*</td>
<td>107 3</td>
</tr>
<tr>
<td>7. Soil pH</td>
<td>33 56 5 3 3 1 3 4 1 1</td>
</tr>
<tr>
<td>8. Soil colour*</td>
<td>9 9 10 21 43 12 5 1</td>
</tr>
<tr>
<td>9. Total basal cover</td>
<td>8 26 33 19 15 5 2 2</td>
</tr>
<tr>
<td>11. Basal cover stratum II</td>
<td>15 68 21 6</td>
</tr>
<tr>
<td>12. Basal cover stratum IV</td>
<td>10 21 43 12 5 1</td>
</tr>
</tbody>
</table>

Table 4. Observed and maximum entropy for each variable and equitability of sampling.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observed Entropy (I)</th>
<th>Maximum Entropy</th>
<th>Sampling equitability (Q)</th>
<th>Ranked Q values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Topographic position</td>
<td>2.39</td>
<td>3.00</td>
<td>0.797</td>
<td>7</td>
</tr>
<tr>
<td>2. Aspect</td>
<td>1.20</td>
<td>1.59</td>
<td>0.755</td>
<td>5</td>
</tr>
<tr>
<td>3. Slope*</td>
<td>1.10</td>
<td>1.59</td>
<td>0.692</td>
<td>3</td>
</tr>
<tr>
<td>4. Biotic influence</td>
<td>1.87</td>
<td>2.00</td>
<td>0.935</td>
<td>12</td>
</tr>
<tr>
<td>5. Surface rock*</td>
<td>1.83</td>
<td>2.00</td>
<td>0.915</td>
<td>11</td>
</tr>
<tr>
<td>6. Soil depth*</td>
<td>2.05</td>
<td>2.59</td>
<td>0.792</td>
<td>6</td>
</tr>
<tr>
<td>7. Soil pH</td>
<td>1.61</td>
<td>2.00</td>
<td>0.805</td>
<td>8</td>
</tr>
<tr>
<td>8. Soil HCl reaction</td>
<td>0.16</td>
<td>1.00</td>
<td>0.160</td>
<td>1</td>
</tr>
<tr>
<td>9. Soil colour</td>
<td>1.70</td>
<td>2.59</td>
<td>0.656</td>
<td>2</td>
</tr>
<tr>
<td>10. Total basal cover</td>
<td>1.42</td>
<td>2.00</td>
<td>0.710</td>
<td>4</td>
</tr>
<tr>
<td>11. Basal cover stratum II</td>
<td>2.31</td>
<td>2.81</td>
<td>0.822</td>
<td>9</td>
</tr>
<tr>
<td>12. Basal cover stratum IV</td>
<td>2.27</td>
<td>2.59</td>
<td>0.876</td>
<td>10</td>
</tr>
</tbody>
</table>
Variables which are equitably sampled according to the Q criterion, include, in order of decreasing importance, biotic influence, surface rock, basal cover for strata IV and II, and soil pH.

Observed entropy has been plotted against maximum entropy for each variable in Fig. 1. The nearer a variable is to the diagonal line, connecting points of maximum entropy, the more equitable is its sampling. Biotic influence, surface rock and cover stratum IV are most equitably sampled while soil HCl reaction, total basal cover and soil colour are, by this criterion, poorly sampled.

To improve equitability of sampling, Daget et al. (1972) suggest resuming stratification of the vegetation where it was stopped, starting with the variables known to be poorly sampled. In the choice of variables, one is also guided by the calculation of mutual information between species and variables, which permits the detection of variables of ecological importance.

MUTUAL INFORMATION BETWEEN SPECIES AND ECOLOGICAL VARIABLES

The frequency of occurrence of species E in each class of variable L forms the ecological profile of species E for variable L. A modified ecological profile results if relative frequency or corrected frequency are used instead of absolute frequency (see Gounot 1958, 1961, 1969, Godron 1965, Guillerm 1969a). The absolute frequency profile is the number of times species E occurs in each class of variable L. It gives the information for species which is given for each variable by the CP. Absolute frequency may yield misleading results as it is directly proportional to the total number of occurrences, therefore it is better to use relative frequency for the species ecological profile (Daget et al. 1972). If there are R_i quadrats in a class of variable L and U_i quadrats in that class contain species E, relative frequency is given by U_i / R_i.

Further to smooth out variations caused by differences in total absolute frequency, corrected frequency is used to form the ecological profile. Corrected frequency for class i (C_i) is found by multiplying relative frequency by the inverse of average relative frequency over all quadrats:

$$C_i = \frac{U_i}{U_T} \cdot \frac{N}{R_i}$$

(see Table 5 for explanation of symbols)

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of quadrats with species X</td>
<td>U_1</td>
<td>U_2</td>
<td>U_3</td>
<td>$\ldots U_K$</td>
</tr>
<tr>
<td>Number without X</td>
<td>V_1</td>
<td>V_2</td>
<td>V_3</td>
<td>$\ldots V_K$</td>
</tr>
<tr>
<td>Total number of quadrats R_1</td>
<td>R_2</td>
<td>R_3</td>
<td>$\ldots R_K$</td>
<td>$R_T + V_T = N$</td>
</tr>
</tbody>
</table>

Information about species behaviour, which is not apparent from the absolute frequency profile, may be obtained from the corrected frequency profile.

Figure 1—Relation between observed and maximum entropy for each ecological variable.
The presences and absences of each species in an ecological profile may be used to calculate species entropy (I_s) which is defined as:

$$I_s = \frac{U_T}{N} \log_2 \frac{N}{U_T} + \frac{V_T}{N} \log_2 \frac{N}{V_T}$$

where $U_T = \sum U_i$ and $V_T = \sum V_i$ (see Table 5)

A species that is either present or absent in all quadrats will have I_s equal to zero, the minimum value, and a species present in half the quadrats will have I_s equal to one, the maximum value. The relationship between relative frequency and species entropy is shown graphically in Fig. 2.

The information carried by a species relative to an environmental variable may be calculated. It is known as the mutual information between species and variable. For species E and variable L (in K classes) it is given by:

$$I_{E,L} = \sum_{i}^K \frac{U_i}{N} \log_2 \frac{N}{U_i} + \sum_{i}^K \frac{V_i}{N} \log_2 \frac{N}{V_i}$$

(Symbols as in Table 5)

As mutual information can be calculated for every species with every variable, a species by variables matrix of entropy values is available. To reduce the volume of results, only certain species and ecological variables are selected, although there is no reason why all the values should not be calculated if this were required.

The calculation of mutual information between species and variables allows the determination of which variables play an important role in the distribution of species, in other words, the ‘active’ variables.
The most convenient way to find active variables is to calculate mean mutual information and plot the values against the entropies of the variables. Mean mutual information is plotted along the ordinate and the entropy of the variable along the abscissa to give a two-dimensional ordering of variables. Study of the distribution of variables within the graph allows choice of those variables which will improve sampling. On such a graph, variables placed to the right and left are, respectively, well-sampled and under-sampled. Variables placed at the top of the graph are more 'active' than those placed below them. To choose variables to be re-sampled, Godron (1968) suggested that variables for re-sampling should be chosen from among those which are insufficiently sampled (to the left of graph) and should be those to which the vegetation appears most sensitive (top of graph). In his application, Godron re-sampled and analyzed twice to obtain a satisfactory sample.

MUTUAL INFORMATION BETWEEN LICHTENBURG SPECIES AND VARIABLES

(a) Overall relationships

In Fig. 3 relationships between mean mutual species information and variable entropy are given for the 12 variables. For each variable, mean mutual information was calculated over the 100 species (out of a total of 229) with highest entropies. From this graph, topographic position, cover stratum II, and stratum IV, soil depth, biotic influence and surface rock are, in that order, most equitably sampled. The most active factors are topographic position, cover stratum II, soil colour, cover stratum IV, soil depth and biotic influence, in that order. With these data there is a marked positive correlation between mean mutual information and variable entropy, illustrated by the clustering along the 5% line.

The diagonal lines in Fig. 3 give the value of mean mutual information divided by the variable entropy as a percentage. It is an expression of the indicator value of variables.

Fig. 3.—Relation between mean mutual information for the species with the highest information content and the entropy of the ecological variables.
The variables are discussed separately in the subsections which follow, but their relationships to each other should not be forgotten; for example, soil depth and biotic influence can be related and soil depth is usually related to slope angle.

(b) Topographic position

Profiles for topographic position present difficulties in interpretation even though, as a variable, it is very favourably placed in Fig. 3. Firstly, there is a very asymmetric distribution of quadrats within the classes with class 5 being very poorly sampled (see comprehensive profile, Fig. 4). Secondly, topography is a discontinuous variable which means that a great deal of inspection is necessary to determine trends and patterns in distribution. Thirdly, the Lichtenburg area has such little relief that large differences in floristic composition related to this variable are not expected. Related to this difficulty is that of the coding of this variable. As coding according to Godron et al. (1968) was done from field notes, a number of quadrats could have been misclassified. For example, the difference between an open and a closed depression, or between a flat area and the crest of a very large, rounded hill, was not always clear from the field notes. At the suggestion of M. Godron (pers. comm., 1973) product-moment correlation coefficients were calculated between each pair of corrected profiles of the 100 species with highest mean mutual information (4,950 calculations) and the 100 highest positive values obtained. Correlations were first calculated over all eight classes of the profile and then over the seven classes remaining after the fifth class had been excluded. As corrected frequency profiles for species over the eight classes were markedly distorted by the low CP value for class 5, the following discussion refers only to correlations over the seven remaining classes.

The 100 correlation values were all significant at p = 0.01 % and the first 14 at p = 0.001 %. Unfortunately, these values were not as satisfactory as expected since mean mutual information level also has to be taken into account. The following are illustrations. The highest correlation was between *Dicona anomala* and *Loudetia simplex* that favour flat areas, rounded summits and waning slopes, according to the profiles. *D. anomala* had the eighth highest mean mutual information value for topographic position while *L. simplex* was fortieth in the ranked order, indicating a low importance. Thus the profile for *L. simplex* is not nearly as significant as that of *D. anomala* even though the profiles are highly correlated.

Gazania krebsiana, *Digitaria argyrograpa* and *Eragrostis gymmiflua* profiles are highly correlated, these species occurring mainly on flat areas and in open depressions. As all three have low mean mutual information values, however, the high correlations are again of not much value.

With data specially collected for an ecological profiles study, use of the correlation coefficient to compare species profiles may be of use.

(c) Aspect

Aspect was not equitably sampled and is not active in the quadrats (Fig. 3). This to be expected as the Lichtenburg area is very flat. In the following discussion it must be remembered that out of a total of seven classes only synthetic classes were retained. Species favouring flat ground (no aspect) include *Senecio coronatus*, *Gazania krebsiana* and *Nidorella hottentotica*.

Species favouring north and north-west aspects include:

1. *Sporobolus africanus*
2. *Cymbopogon plurinodis*
3. *Eragrostis superba*
4. *Chascanum pinnatifida*
5. *Eragrostis stapfii*
6. *Stipagrostis uniplumis*

(In the above and following lists, species are ordered by decreasing mutual information content. Figured species have the highest mutual information contents.) Species favouring the south, south-west, south-east and/or east aspects include:

1. *Dicona macrocephala*
2. *Diheteropogon amplexectus*
3. *Talinum arnottii*
4. *Coleus neochilus*
5. *Teuchyspogon spicatus*
6. *Blepharis angusta*
7. *Euphorbia pseudotuberosa*
8. *Eragrostis lehmmaniana*
9. *Herrmannia tomentosa*
10. *Bulbine sp.*
11. *Anthephora pubescens*
12. *Turbina oblongata*

These lists must be considered very tentative as much more intensive sampling of all aspects will be necessary to obtain a reliable picture of the influence of aspect and topographic position on species distributions.

(d) Biotic influence

Results which appeared very good were obtained from this environmental variable. The problem with interpreting the results was, however, that the quadrats, as regards biotic influence, were classed on the basis of a subjective appreciation whereby the species composition of the quadrat influenced the assessment of the degree of biotic influence and may have distorted the ecological profiles.

As may be expected, the main patterns of distribution along the biotic influence profile are an increasing or decreasing corrected frequency with increase in biotic influence. Good examples of the former are: *Ursinia nana*, *Eragrostis tricophora*, *Cynodon dactylon* and *E. lehmmaniana* (Fig. 5). Other species also having this trend include:

1. *Dicona macrocephala*
2. *Corchorus asplenifolius*
3. *Blepharis integrifolia*
4. *Kohautia omahekensis*
5. *Euphorbia pseudotuberosa*
6. *Heteropogon contortus*
7. *Rhynechlyrum repens*
8. *Hypoxis sp.*
9. *Ursinia nana*
10. *Mendiora africana*
11. *Pentanisia sp.*

A related distribution is shown by *Eragrostis superba*. This species as well as:

1. *Herrmannia tomentosa*
2. *Indigofera daleoides*
3. *Chascanum pinnatifida*
4. *Stipagrostis uniplumis*
5. *Eustachys mutica*

are found in approximately equal proportions in the three classes of disturbed vegetation but are not common in undisturbed areas.
Species found on undisturbed areas and having successively lower corrected frequencies as the degree of biotic influence increases, include, notably, Clematopsis stanleyi and Diheteropogon amplexentens (Fig. 5) as well as:

1. *Thesium costatum*
2. *Eragrostis racemosa*
3. *Schizachyrium sanguineum*
4. *Acalypha sp.*
5. *Cymbopogon excavatus*
6. *Heteropogon contortus*
7. *Barleria pretoriensis*

Soil depth

The comprehensive profile for soil depth (Fig 6) shows that deeper soils were not well sampled. As the whole study area is a dolomitic lithosol with only pockets of deep soil, additional random sampling will not produce a more even distribution. Equitability of sampling will be achieved only if quadrats are placed at random within the deep-soil pockets.

The ecological profile for *Zornia milneana* (Fig. 6) shows it to occur on deep soil, whereas *Ipomoea obscura* var. *fragilis* and *Oropetium capense* are most frequent on very shallow soil. It was observed during fieldwork that the latter species usually occurred in small sand pockets in extensive dolomite sheets. The profile confirms the observations. The profile for *Kohautia omahakensis* suggests that within the range included in the study it has a wide soil depth amplitude below 40 cm, but is most frequent on soils about 15 cm deep.

(f) **Soil pH**

Even though this factor was not equitably sampled (Fig. 3), valuable information about the ecology of certain species can be gained from a study of the corrected ecological profiles. Certain species have been plotted in Fig. 7 to illustrate the four main trends.

The most remarkable trend is shown by *Fingerhuthia africana* and *Oropetium capense* (Fig. 7), which are restricted to soil with a pH of 8.0 or higher.

Other species showing this trend, but to a less marked extent, include:

1. *Stipagrostis uniplumis*
2. *Turbina oblongata*
3. *Sporobolus africanus*
4. *Vernonia oliboecophala*
5. *Brachiaria serrata*
6. *Euphorbia inquilinae*

All these species occur on neutral and basic soils and not acid ones.

An example of a species rarely found on soils with a pH above 7.0 is *Justicia anagaloides*. It grows equally well in acid or neutral soils (Fig. 7). Other species with the same distribution include *Chascanum hederaeum*, *Eragrostis racemosa* and *Sporobolus pectinatus*.

Species found on acid soils but which also grow in neutral pH include *Eragrostis tricophora* and *Dicoma anomala* (Fig. 7). Other species which exhibit this trend of decreasing corrected frequency with increasing pH are:

1. *Oxygonum dregeanum*
2. *Pygmaeothamnus zeyheri*
3. *Raphionacme burkei*
4. *Rhynchochiton repens*
5. *Hermannia betonicifolia*
6. *Lasiosiphon capitatus*
7. *Zornia milneana*

Species showing a peak of corrected frequency in the centre of the range, in other words growing in a neutral or slightly acid soil, include *Barleria macrostegia* and *Lightfootia denticulata* (Fig. 7). Other species with similar distributions include:

1. *Helichrysum caespititium*
2. *Dicoma macrocephala*
3. *Acalypha sp.*
4. *Chaetacanthus costatus*
5. *Diheteropogon amplexentens*
6. *Cypophorac angustifolia*
7. *Schizachyrium sanguineum*

(g) **Basal cover**

Total basal cover was inadequately sampled (Fig. 3), and is not discussed further. Within the second and fourth strata, however, three patterns of
species behaviour emerge. Corrected frequencies of certain species increase as cover increases while frequencies of others decrease or, as in the third pattern, increase to a peak and then decrease. It is stressed that cover is used as an ecological variable and not a structural property of the vegetation. It is assumed that the degree of cover influences the behaviour of certain species.

Species in which peaks of corrected frequency are found in both the second and fourth strata include (in alphabetical order):

- Barleria pretoriensis
- Bulbostylis burchellii
- Coleus neochilus
- Loudetia simplex
- Lightfootia denticulata

while species with peaks in the second stratum only include:

1. Chaetacanthus costatus
2. Diheteropogon amplectens
3. Corchorus asplenifolius
4. Helichrysum caespititium
5. Dicoma anomala
6. Bulbine sp.

Species which increase in frequency as basal cover in the second stratum increases include Ursinia nana, Dicoma macrocephala, Eragrostis stapfii, Eustachys mutica and Brachiaria serrata, while Andropogon appendiculatus, Diplachne fiscus, Ipomoea obscura var. fragilis and Eragrostis racemosa exhibit the opposite trend. In the fourth stratum species which increase include Thesium costatum, Raphionacme hissuta, Turbina oblongata, Pygmaeothamnus zeyheri and Nolletia ciliaris while:

1. Blepharis integrifolia
2. Eragrostis lehmanniana
3. Setaria nigrostris
4. Digitaria argyrograpta
5. Hibiscus microcarpus
6. Cynodon dactylon
7. Lippia scaberrima
8. Cyperus capensis
9. Sida chrysantha

decrease in frequency as basal cover in the fourth stratum increases.

In addition to the expected trends described above, certain species show rather odd distributions when both strata are considered. These are illustrated in Fig. 8. Zornia milneana, a short, creeping herb...
shows a marked J-shaped curve in the second stratum and decreases sharply in the fourth stratum as cover increases. Acalypha sp., another short herb, increases in frequency in the second stratum as cover increases but reaches a peak in the fourth class of the fourth stratum. Species which decrease as cover in the second stratum increases, and increase as cover in the fourth stratum increases, are Diplachne biflora and Elephantorrhiza elephantina.

Although basal cover in both strata II and IV are active and well-sampled variables (Fig. 3), inspection of the compreensive profiles (Fig. 8) shows that the distribution of quadrats through the classes is far from regular, which may account for the odd patterns described above.

(h) Other variables

Other variables are not discussed in detail. Surface rock is closely correlated with soil depth in this study. As few slopes within the study area were so gentle, the slope profile does not carry much information. HC1 reaction was very poorly sampled and trying to attach ecological significance to soil colour was not considered worthwhile.

SPECIES INDICATOR VALUES

For each ecological variable the species may be ranked by decreasing mutual information content. The rank then gives the species indicator value for that variable. While study of the corrected ecological profiles allows specification of the ecology of the species, it is possible to identify the species of which the ecological requirements are most similar by means of the indicator values. Species with the 20 highest indicator values for each of the 12 variables were listed and species which were listed four or more times are given in Table 6. These species are most active over all the environmental variables.

Instead of looking at the species by variables matrix of mutual information, variable by variable, as was done above, it may be studied species by species. In Table 7 mutual information values of five species are given for the twelve variables. To obtain a

Table 6. Species ranked in one of the first 20 positions for at least four variables and the variables for which they were so ranked. Names of variables corresponding to numbers are given in Table 7.

<table>
<thead>
<tr>
<th>Species</th>
<th>Variable number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stipagrostis uniplumis</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 Total</td>
</tr>
<tr>
<td>2. Schizachyrium sanguineum</td>
<td></td>
</tr>
<tr>
<td>3. Turbinablablongata</td>
<td></td>
</tr>
<tr>
<td>4. Dicoma macrocephala</td>
<td></td>
</tr>
<tr>
<td>5. Justicia anagaloide</td>
<td></td>
</tr>
<tr>
<td>6. Diheteropogon amplexdens</td>
<td></td>
</tr>
<tr>
<td>7. Bracharia serrata</td>
<td></td>
</tr>
<tr>
<td>8. Cymbopogon plurinodis</td>
<td></td>
</tr>
<tr>
<td>9. Dicoma anomalas</td>
<td></td>
</tr>
<tr>
<td>10. Eragrostis lehmanniana</td>
<td></td>
</tr>
<tr>
<td>11. Eragrostis superba</td>
<td></td>
</tr>
<tr>
<td>12. Indigofera daleoides</td>
<td></td>
</tr>
<tr>
<td>13. Ipomoea obscura var. fragilis</td>
<td></td>
</tr>
<tr>
<td>14. Oropetium capense</td>
<td></td>
</tr>
<tr>
<td>15. Eragrostis curvula</td>
<td></td>
</tr>
<tr>
<td>16. Eragrostis racemosa</td>
<td></td>
</tr>
<tr>
<td>17. Eragrostis staphi</td>
<td></td>
</tr>
<tr>
<td>18. Fingerhuthia africana</td>
<td></td>
</tr>
<tr>
<td>19. Loudetia simplex</td>
<td></td>
</tr>
<tr>
<td>20. Ophrestia retusa</td>
<td></td>
</tr>
<tr>
<td>21. Senecio coronatus</td>
<td></td>
</tr>
<tr>
<td>22. Senecio venosus</td>
<td></td>
</tr>
<tr>
<td>23. Sporobolus africanus</td>
<td></td>
</tr>
<tr>
<td>24. Thesium costatum</td>
<td></td>
</tr>
<tr>
<td>25. Ursinia nana</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Mutual information between five species and 12 variables (X = mean mutual information, 1 = Stipagrostis uniplumis, 2 = Schizachyrium sanguineum, 3 = Turbinablablongata, 4 = Dicoma macrocephala, 5 = Justicia anagaloide).

<table>
<thead>
<tr>
<th>Variable</th>
<th>X, for 1st 100 species</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1. Topographic position</td>
<td>0.145</td>
<td>0.169 0.174 0.152 0.142 0.121</td>
</tr>
<tr>
<td>2. Aspect</td>
<td>0.060</td>
<td>0.097 0.109 0.050 0.098 0.039</td>
</tr>
<tr>
<td>3. Slope</td>
<td>0.053</td>
<td>0.068 0.071 0.047 0.045 0.045</td>
</tr>
<tr>
<td>4. Biotic influence</td>
<td>0.110</td>
<td>0.133 0.155 0.142 0.208 0.144</td>
</tr>
<tr>
<td>5. Surface rock</td>
<td>0.084</td>
<td>0.112 0.095 0.121 0.104 0.113</td>
</tr>
<tr>
<td>6. Soil depth</td>
<td>0.121</td>
<td>0.171 0.161 0.157 0.116 0.112</td>
</tr>
<tr>
<td>7. Soil pH</td>
<td>0.093</td>
<td>0.128 0.095 0.124 0.124 0.158</td>
</tr>
<tr>
<td>8. HC1 reaction</td>
<td>0.024</td>
<td>0.028 0.012 0.043 0.012 0.063</td>
</tr>
<tr>
<td>9. Soil colour</td>
<td>0.138</td>
<td>0.335 0.197 0.298 0.113 0.206</td>
</tr>
<tr>
<td>10. Basal cover</td>
<td>0.075</td>
<td>0.098 0.062 0.094 0.081 0.081</td>
</tr>
<tr>
<td>11. Cover stratum II</td>
<td>0.139</td>
<td>0.162 0.172 0.128 0.174 0.168</td>
</tr>
<tr>
<td>12. Cover stratum IV</td>
<td>0.129</td>
<td>0.151 0.145 0.137 0.245 0.123</td>
</tr>
</tbody>
</table>

* Not calculated, less than 0.054.
datum, the mean mutual information for the 100 species with highest mutual information values is given for each variable. The relative importance of each species may be obtained by comparing the mean mutual information value with individual values. The five species occurred in one of the first 20 ranked positions of the highest number of variables. Any species in which one was interested could be included. For detailed study of these values it will probably be necessary to use either the species rank or, at least, a corrected value as datum.

INDICATOR GROUPS

According to Daget et al. (1972), species with similar ecological profiles and carrying a high information content for the same variables form 'ecological groups'. To avoid confusion with 'ecological groups' in the community sense, M. Godron (pers. comm., 1973) suggested the term 'indicator group'. An indicator group is a collection of species with the same, or similar, ecological requirements. From past work, according to the Daget et al., it appears that the number of groups of species or of isolated species stabilizes rapidly. The succeeding groups confirm those that have been established before, or only modify them slightly. As many variables are usually correlated (for example, slope angle and soil depth) and the active variables are analyzed first, the remaining variables usually add little new information. Any number of indicator groups may be established for a variable as the distribution of species along a continuous environmental gradient is continuous, or nearly so. The species may be ordered in a series of groups that are scale-imbricated. Ordering may be done automatically with the aid of a card sorter (Daget & David, 1970).

In this paper, species that have the same, or a similar pattern of response to a variable have been discussed together, but no attempt has been made to derive indicator groups as the data were considered incomplete.

CONCLUSIONS

For the determination of ecological profiles it is necessary to calculate the entropy, or information content of species, of variables, or mutually between species and variables. The calculations assume the frequency distribution to be related to the probabilities of species occurrence. The collection of quadrats is considered a "population" and is treated as such. This equivalence has its limitations in that it assumes the number of quadrats is 'large'. By use of a more complex entropy formula, it is possible, however, to overcome this drawback and use relatively 'small' samples. Experience gained from other analyses carried out at Montpellier shows that, with the entropy formula described above, about 100 quadrats are necessary for a reasonable first approximation. With fewer than 100 quadrats the results should only be used as a guide although the conclusions concerning the necessary improvements to sampling are still useful.

Montpellier ecologists (Daget et al., 1972) stress that the main application of the ecological profiles technique is sampling improvement. Deficiencies in sampling do show up (for example HCl reaction, Figs. 1 & 3), but the ecological profiles produced have another important use. Valuable quantitative, although univariate, information about species reactions to environmental factors is produced. Because of inadequate sampling of habitat variables, the ecological results of the Lichtenburg analysis should be treated with caution although they indicate the potential value of the technique.

With adequate sampling of habitat variables, determination of the ecological profiles of common South African plant species for the most important environmental variables would provide the kind of information needed to explain the ecology of South African vegetation and hence its rational management and use.

ACKNOWLEDGEMENTS

We wish to thank M. Godron of C.E.P.E./C.N.R.S., Montpellier, for assistance with the translation of some problematical terms, for commenting on the manuscript and for encouragement. The senior author would like to thank the Secretary of the Department of Agricultural Technical Services, Pretoria, for the study bursary which made his visit to Montpellier possible and Dr D. Edwards for encouragement and valuable comments on the manuscript.

REFERENCES

