Search this journal:     Advanced search
Original Research

Assessing habitat fragmentation of the KwaZulu-Natal Sandstone Sourveld, a threatened ecosystem

Rowan Naicker, Mathieu Rouget, Onisimo Mutanga

Bothalia: African Biodiversity & Conservation; Vol 46, No 2 (2016), 10 pages. doi: 10.4102/abc.v46i2.2104

Submitted: 23 May 2016
Published:  29 November 2016


Background: The KwaZulu-Natal Sandstone Sourveld (KZN SS) is a grassland ecosystem categorised as endangered by the terms of the National Environmental Management: Biodiversity Act (Act 10 of 2004). Pressure from urbanisation has led to the remaining areas of the KZN SS being physically fragmented, causing low connectivity levels which have diminished the biological persistence of this ecosystem.
Objectives: This study aimed to quantify the overall level of habitat fragmentation of the KZN SS and determine the level of connectivity within the ecosystem, and patches of the KZN SS occurring in the eThekwini Municipal area. Using graph theory, we compared the effectiveness of broad-scale and fine-scale data sets in quantifying habitat fragmentation.
Methods: The Conefor Sensinode software, which employs the bases of graph theory, was chosen to aid in assessing fragmentation levels. The integral index of connectivity (IIC) (values range from 0 to 1, with 1 highlighting optimal connectivity) was chosen as the best index to determine landscape connectivity.
Results: The KZN SS was shown to be highly fragmented, especially at dispersal distances less than 500 m. This resulted in very low connectivity levels, with the highest IIC value recorded at 0.0063. Moreover, the use of either fine-scale or broad-scale data to measure connectivity differed substantially at 1000 m.
Conclusion: Broad-scale data were shown to overestimate habitat fragmentation and underestimate landscape connectivity. A more apt description of KZN SS connectivity levels was realised with fine-scale data. This study recommends that crucial KZN SS patches be prioritised to safeguard this endangered ecosystem.

Full Text:  |  HTML  |  EPUB  |  XML  |  PDF (5MB)

Author affiliations

Rowan Naicker, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa
Mathieu Rouget, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa
Onisimo Mutanga, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa


Habitat Fragmentation; Landscape connectivity; Connectivity measures; Grassland; Urban conservation


Total abstract views: 419
Total article views: 1227  


1. Improving the management of threatened ecosystems in an urban biodiversity hotspot through the Durban Research Action Partnership
Mathieu Rouget, Sean O’Donoghue, Chantal Taylor, Debra Roberts, Rob Slotow
Bothalia  vol: 46  issue: 2  year: 2016  
doi: 10.4102/abc.v46i1.2199

Comments on this article

Before posting your comment, please read our policy.
Post a Comment (Login required)

ISSN: 0006-8241 (print) | ISSN: 2311-9284 (online)

Connect on: Facebook, Twitter, Google+, LinkedIn and YouTube

Subscribe to our newsletter

All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, unless otherwise stated.

Website design & content: ©2017 AOSIS (Pty) Ltd. All rights reserved. No unauthorised duplication allowed.

AOSIS Publishing | Empowering Africa through access to knowledge
Postnet Suite #110, Private Bag X19, Durbanville, South Africa, 7551
Tel: 086 1000 381
Tel: +27 21 975 2602
Fax: 086 5004 974

publishing(AT) replace (AT) with @

Please read the privacy statement.